Lecture \# 1

(Automata Theory)

Material / Resources

」 Text Books

1. Introduction to Computer Theory, by Daniel I. Cohen, John Wiley and Sons, Inc., 2005, Second Edition
2. Introduction to Languages and Theory of Computation, by J. C. Martin, McGraw Hill Book Co., 2003, Third Edition.

- www

Any other good book on Automata Theory

Grading

Assignments 10%

- Quizzes 10%
- Míd Term 25%
- Final Exam 50\%
\lrcorner Class Contribution $.5 \%$

Theory of Automata

 (alsoll er $x_{1}^{2}=$ rimes=
\&
$=$
9
or
-
-
13
-12

What does Automata mean?

\lrcorner It is the plural of automaton, and it means "something that works automatically".
Automata theory is the study of abstract computational devices and the computational problems that can be solved using them.
\lrcorner Abstract devices are (simplified) models of real computations.

- 1- Automata and formal language.
\lrcorner Which answers - What are computers (Or what are models of computers)
- 2- Compatibility.

Which answers - What can be computed by computers?
」 3-Complexity.
\lrcorner Which answers - What can be efficiently computed?

- In automata we will simulates parts of computers.
\lrcorner Helps in design and construction of different software's and what we can expect from our software's.
Automata play a major role in theory of computation, compiler design, artificial intelligence.

A simple computer

input: switch
output: light bulb
actions: flip switch
states: on, off

A simple "computer"

input: switch
output: light bulb
actions: for "flip switch"
states: on, off
bulb is on if and only if there was an odd number of flips

Another "computer",

inputs: switches I and 2
actions: 1 for"flip switch I"
2 for"flip switch 2"
states: on, off
bulb is on if and only if both switches were flipped an odd number of times

Introduction to languages

Kinds of languages:

- Talking language
- Programming language

Formal Languages (Syntactic languages)

Alphabets

\lrcorner Definition:
A finite non-empty set of symbols (letters), is called an alphabet. It is denoted by Σ (Greek letter sigma).

- Example:
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$\Sigma=\{0,1\} / /$ important as this is the language //which the computer
understands.
$\Sigma=\{i, j, k\}$
- A certain version of language ALGOL has 113 letters.

Strings

\lrcorner Definition:
Concatenation of finite symbols from the alphabet is called a string.

- Example:

If $\Sigma=\{a, b\}$ then $a, a b a b, a a a b b$, ababababababababab

Language

Language is the set of all strings of terminal symbols derivable from alphabet.

NOTE:

EMPTY STRING or NULL STRING

\lrcorner Sometimes a string with no symbol at all is used, denoted by (Small Greek letter Lambda) λ or (Capital Greek letter Lambda) Λ, is called an empty string or null string.
\lrcorner The capital lambda will mostly be used to denote the empty string, in further discussion.

Words

\lrcorner Definition:
Words are strings belonging to some language.

- Example:

If $\Sigma=\{a\}$ then a language L can be defined as
$L=\left\{a^{n}: n=1,2,3, \ldots.\right\}$ or $L=\{a, a a, a a a, \ldots .$.

Here $a_{1, \text { aa }}^{1, \ldots}$ are the words of L

NOTE:

All words are strings, but not all strings are words

Valid/In-valid alphabets

\lrcorner While defining an alphabet, an alphabet may contain letters consisting of group of symbols for example $\Sigma_{1}=\{B, a B$, bab, $d\}$.
\lrcorner Now consider an alphabet $\Sigma_{2}=\{B, B a, b a b, d\}$ and a string BababB

Valid/In-valid alphabets

\lrcorner This BababB (string) can be tokenized in two different ways

$$
\begin{aligned}
& (\mathrm{Ba}),(\mathrm{bab}),(\mathrm{B}) \\
& (\mathrm{B}),(\mathrm{abab}),(\mathrm{B})
\end{aligned}
$$

Which shows that the second group cannot be identified as a string, defined over

$$
\Sigma_{2}=\{\mathrm{B}, \mathrm{Ba}, \mathrm{bab}, \mathrm{~d}\}
$$

Valid/In-valid alphabets

\lrcorner As when this string is scanned by the compiler (Lexical Analyzer), first symbol B is identified as a letter belonging to Σ, while for the second letter the lexical analyzer would not be able to identify, so while defining an alphabet it should be kept in mind that ambiguity should not be created.

Remarks:

\lrcorner While defining an alphabet of letters consisting of more than one symbols, no letter should be started with the letter of the same alphabet i.e one letter should not be the prefix of another. However, a letter may be ended in the letter of same alphabet i,e, one letter may be the suffix of another.

Conclusion

$\lrcorner \Sigma_{1}=\{B, a B, b a b, d\}$
$\lrcorner \Sigma_{2}=\{\mathrm{B}, \mathrm{Ba}, \mathrm{Dab}, \mathrm{d}\}$
$\lrcorner \Sigma_{1}$ is a valid alphabet while Σ_{2} is an in-valid a) phabet.

Length of Strings

\lrcorner Definition:
The length of string s, denoted by $|s|$, is the number of letters in the string.

- Example:

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& s=a b a b a \\
& |s|=5
\end{aligned}
$$

Example:
$\Sigma=\{\mathrm{B}, \mathrm{aB}, \mathrm{bab}, \mathrm{d}\}$
$\mathrm{s}=\mathrm{BaBbabBd}$
Tokenizing=(B), (aB), (bab), (B), (d)
$|s|=5$

Reverse of a String

- Definition:

The reverse of a string s denoted by Rev(s) or sr, is obtained by writing the letters of s in reverse order.

- Example:

If $s=a b c$ is a string defined over
$\Sigma=\{a, b, c\} \quad$ then
$\operatorname{Rev}(\mathrm{s})$ or $\mathrm{s}^{r}=\mathrm{cba}$

Reverse of a String

- Example:
$\Sigma=\{B, a B, b a b, d\}$
$s=B a B b a b B d$
Tokenizing=(B) (aB) (bab) (B) (d)
$\operatorname{Rev}(s)=d B b a b a B B$

Defining Languages

The languages can be defined in different ways, such as

1. Descriptive definition,
2. Recursive definition,
3. using Regular Expressions(RE) and
4. using Finite Automaton $(F A)$ etc.
\lrcorner Descriptive definition of language:
The language is defined, describing the conditions imposed on its words.

- Example:

The language L of strings of odd length, defined over $\Sigma=\{a\}$, can be written as

$$
\mathrm{L}=\left\{\mathrm{a}, \mathrm{aaa}, \mathrm{aa}, a_{1}, \ldots . .\right\}
$$

- Example:

The language L of strings that does not start with a, defined over $\Sigma=\{a, b, c\}$, can be written as

$$
\mathrm{L}=\{\mathrm{b}, \mathrm{c}, \mathrm{ba}, \mathrm{bb}, \mathrm{bc}, \mathrm{ca}, \mathrm{cb}, \mathrm{cc}, \ldots\}
$$

- Example:

The language L of strings of length 2 , defined over $\Sigma=\{0,1,2\}$, can be written as

$$
\mathrm{L}=\{00,01,02,10,11,12,20,21,22\}
$$

- Example:

The language L of strings ending in 0 , defined over $\Sigma=\{0,1\}$, can be written as $L=\{0,00,10,000,010,100,110, \ldots\}$

- Example:

The language EQUAL, of strings with number of a's equal to number of b 's, defined over $\Sigma=\{a, b\}$, can be written as
$\{\Lambda, a b, a a b b, a b a b, b a b a, a b b a, \ldots\}$

- Example:

The language EyEN-EVEN, of strings with even number of a's and even number of b's, defined over $\Sigma=\{a, b\}$, can be written as
$\{\Lambda$, aa, bb, aaaa, aabb,abab, abba, baab, baba, bbaa, $\left.{ }^{\text {bbbb }}, \ldots\right\}$

- Example:

The language INTEGER, of strings defined over $\Sigma=\{-, 0,1,2,3,4,5,6,7,8,9\}$, can be written as INTEGER $=\{\ldots,-2,-1,0,1,2, \ldots\}$

- Example:

The language $E \sqrt{2} \mathrm{~N}$, of stings defined over $\Sigma=\{-, 0,1,2,3,4,5,6,7,8,9\}$, can be written as EVEN $=\{\ldots,-4,-2,0,2,4, \ldots\}$

- Example:

The language $\left\{a^{n} b^{n}\right\}$, of strings defined over $\Sigma=\{a, b\}$, as $\quad\left\{a^{n} b^{n}: n=1,2,3, \ldots\right\}$, can be written as

$\{a b, a a b b, a a a b b b, a a a a b b b b, \ldots\}$

- Example:

The language $\left\{a^{n} b^{n} a^{n}\right\}$, of strings defined over $\Sigma=\{a, b\}$, as $\quad\left\{a^{n} b^{n} a^{n} ; n=1,2,3, \ldots\right\}$, can be written as
\{aba, aabbaa, aaabbbaaa,aaaabbbbaaaa,...

- Example:

The language factorial, of strings defined over $\Sigma=\{1,2,3,4,5,6,7,8,9\}$ l.e. $\{1,2,6,24,120, \ldots\}$

- Example:

The language FACJORIAL, of strings defined over $\Sigma=\{a\}$, as $\left\{a^{n!} ; n=1,2,3, \ldots\right\}$, can be written as \{a,aa,aaaaaa,....\}.
It is to be noted that the language FACTORIAL can be defined over any single letter alphabet.

- Example:

The language DOUBLEFACIORIAL, of strings defined over $\Sigma=\{a, b\}$, as $\left\{a^{n!} b^{n!} ; n=1,2,3, \ldots\right\}$, can be written as
$\{a b, a a b b$, aaaaaabbbbbb, ... $\}$

- Example:

The language SQUARE, of strings defined over $\Sigma=\{a\}$, as
$\left\{a^{n^{2}}: n=1,2,3, \ldots\right\}$, can be written as
$\left\{a_{1}\right.$ aaaa, aaaaaaaaa,...$\}$

- Example:

The language DOUBLESQUARE, of strings defined over $\Sigma=\{a, b\}$, as
$\left\{a n^{2} b^{n^{2}} ; n=1,2,3, \ldots\right\}$, can be written as
$\{a b, a a a a b b b b, a a a a a a a a b b b b b b b b b, \ldots\}$

- Example:

The language PRIME, of strings defined over $\Sigma=\{a\}$, as
\{ap : p is prime $\}$, can be written as \{aa,aaa,aaaaa,aaaaaaa,aaaaaaaaaaaa....\}

An Important language

- PALINDROME

The language consisting of Λ and the strings s defined over Σ such that $\operatorname{Rev}(s)=s$. It is to be denoted that the words of PALINDROME are called palindromes.

- Example:

For $\Sigma=\{a, b\}, \quad$ PALINDROME $=\{\Lambda, a, b, a a, b b$, aaa, aba, bab, bbb, ...\}

Thank you...

